肠道微生物与衰老

周峰, 李佳琪, 周玉枝, 秦雪梅, 高丽, 杜冠华

中国药学杂志 ›› 2019, Vol. 54 ›› Issue (10) : 761-765.

PDF(1137 KB)
PDF(1137 KB)
中国药学杂志 ›› 2019, Vol. 54 ›› Issue (10) : 761-765. DOI: 10.11669/cpj.2019.10.001
综述

肠道微生物与衰老

  • 周峰1a,1b, 李佳琪1a,1b, 周玉枝1a, 秦雪梅1a, 高丽1a*, 杜冠华2*
作者信息 +

Intestinal Microorganisms and Aging

  • ZHOU Feng1a,1b, LI Jia-qi1a,1b, ZHOU Yu-zhi1a, QIN Xue-mei1a, GAO Li1a*, DU Guan-hua2*
Author information +
文章历史 +

摘要

越来越多的证据表明,肠道微生物的种类、数量在衰老过程中发生了微妙变化,影响着机体的衰老状态。其中,大脑和肠道微生物之间的双向调节机制肠-脑-轴通过调节炎症因子等方式影响着衰老性认知障碍。通过合理的膳食纤维、益生菌干预和菌群移植可以一定程度上调节肠道菌群的结构和数量,减少由肠道菌群失调引起的疾病,起到延缓衰老的作用。

Abstract

More and more evidence shows that the type and quantity of intestinal microbes have undergone subtle changes during the aging process, affecting the aging state of the body. Among them, the two-way regulatory mechanism between the brain and the intestinal microflora gut-brain-axis affects senile cognitive impairment by regulating inflammatory factors. Through reasonable dietary fiber, probiotic intervention and microbial transplantation, the structure and quantity of intestinal flora can be adjusted to a certain extent, and diseases caused by dysbacteriosis of the intestinal flora can be reduced, which can delay aging.

关键词

肠道菌群 / 肠-脑-轴 / 认知障碍 / 衰老

Key words

intestinal microflora / gut-brain-axis / cognitive disorders / aging

引用本文

导出引用
周峰, 李佳琪, 周玉枝, 秦雪梅, 高丽, 杜冠华. 肠道微生物与衰老[J]. 中国药学杂志, 2019, 54(10): 761-765 https://doi.org/10.11669/cpj.2019.10.001
ZHOU Feng, LI Jia-qi, ZHOU Yu-zhi, QIN Xue-mei, GAO Li, DU Guan-hua. Intestinal Microorganisms and Aging[J]. Chinese Pharmaceutical Journal, 2019, 54(10): 761-765 https://doi.org/10.11669/cpj.2019.10.001
中图分类号: R965    R915   

参考文献

[1] LU M, WANG Z. Microbiota and aging. Adv Exp Med Biol, 2018, 1086:141-156.
[2] QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285):59-65.
[3] CARDING S, VERBEKE K, VIPOND D T, et al. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis, 2015, 26:26191.
[4] MALAGUARNERA G, GIORDANO M, NUNNARI G, et al. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J Gastroenterol, 2014, 20(44):16639-16648.
[5] CHARBONNEAU M R, BLANTON L V, DIGIULIO D B, et al. A microbial perspective of human developmental biology. Nature, 2016, 535(7610):48-55.
[6] LYNCH D B, JEFFERY I B, O′TOOLE P W. The role of the microbiota in ageing: current state and perspectives. Wiley Interdiscip Rev Syst Biol Med, 2015, 7(3):131-138.
[7] JAKOBSSON H E, ABRAHAMSSON T R, JENMALM M C, et al. Decreased gut microbiota diversity, delayed bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut, 2014, 63(4):559-566.
[8] BIASUCCI G, RUBINI M, RIBONI S, et al. Mode of delivery affects the bacterial community in the newborn gut. Early Hum Dev, 2010, 86:13-15.
[9] MCGUIRE M K, MCGUIRE M A. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol, 2017, 44:63-68.
[10] FAN W, HUO G, LI X, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in infants during the six months of life. J Microbiol Biotechnol, 2014, 24(2):133-143.
[11] MARIAT D, FIRMESSE O, LEVENEZ F, et al. The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol, 2009, 9:123.
[12] TURRONI F, MILANI C, DURANTI S, et al. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci, 2018, 75(1): 103-118.
[13] RAUTAVA S, LUOTO R, SALMINEN S, et al. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol, 2012, 9(10):565-576.
[14] KOENIG J E, SPOR A, SCALFONE N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 2011, 108:4578-4585.
[15] DAVE M, HIGGINS P D, MIDDHA S, et al. The human gut microbiome: current knowledge, challenges, and future directions. Transl Res, 2012, 160(4):246-257.
[16] FAITH J J, GURUGE J L, CHARBONNEAU M, et al. The long-term stability of the human gut microbiota. Science, 2013, 341(6141):1237439.
[17] KUMAR M, BABAEI P, JI B, et al. Human gut microbiota and healthy aging: recent developments and future prospective. Nutr Healthy Aging, 2016, 4(1):3-16.
[18] VAISERMAN A M, KOLIADA A K, MAROTTA F. Gut microbiota: a player in aging and a target for anti-aging intervention. Ageing Res Rev, 2017, 35:36-45.
[19] BIAGI E, NYLUND L, CANDELA M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One, 2010, 5(5):e10667.
[20] WOODMANSEY E. Intestinal bacteria and ageing. J Appl Microbiol, 2007, 102(5):1178-1186.
[21] SCHIFFRIN E J, MORLEY J E, DONNET-HUGHES A, et al. The inflammatory status of the elderly: the intestinal contribution. Mutat Res, 2010, 690(1-2):50-56.
[22] CANDELA M, BIAGI E, BRIGIDI P, et al. Maintenance of a healthy trajectory of the intestinal microbiome during aging: a dietary approach. Mech Ageing Dev, 2014, 136-137:70-75.
[23] OUWEHAND A C, BERGSMA N, PARHIALA R, et al. Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol, 2008, 53(1):18-25.
[24] BUFORD T W. (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome, 2017, 5(1):80.
[25] BARNES M J, POWRIE F. Regulatory T cells reinforce intestinal homeostasis. Immunity, 2009, 31(3):401-411.
[26] HOOPER L V, MACPHERSON A. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol, 2010, 10(3):159-169.
[27] MALOY K. The interleukin-23/interleukin-17 axis in intestinal inflammation. J Intern Med, 2008, 263(6):584-590.
[28] KIM S, JAZWINSKI S M. The gut microbiota and healthy aging: a mini-review . Gerontology, 2018, 64(6):513-520.
[29] THEVARANJAN N, PUCHTA A, SCHULZ C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction . Cell Host Microbe, 2017,21(4):455-466.
[30] CRYAN J F, O′MAHONY S M. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil, 2011, 23(3):187-192.
[31] HU X, WANG T, JIN F. Alzheimer′s disease and gut microbiota. Sci China Life Sci(中国科学:生命科学), 2016, 59(10):1006-1023.
[32] D′MELLO C, RONAGHAN N, ZAHEER R, et al. Probitics improve inflammation-associated sickness by altering communication between the peripheral immune system and the brain. J Neurosci, 2015, 35(30):10821-10830.
[33] DIAZ HEIJTZ R, WANG S, ANUAR F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA, 2011, 108(7):3047-3052.
[34] NEUFELD K M, KANG N, BIENENSTOCK J, et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil, 2011, 23(3):255-264.
[35] TANNOCK G W, SAVAGE D C. Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun, 1974, 9(3):591-598.
[36] JASAREVIC E, HOWERTON C L, HOWARD C D, et al. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology, 2015, 156(9):3265-3276.
[37] SAULNIER D M, RINGEL Y, HEYMAN M B, et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes, 2013, 4(1):17-27.
[38] KELLY J R, MINUTO C, CRYAN J F, et al. Cross talk: the microbiota and neurodevelopmental disorders. Front Neurosci, 2017, 11:490.
[39] CHOI J, HUR T Y, HONG Y. Influence of altered gut microbiota composition on aging and aging-related diseases. J Lifestyle Med, 2018, 8(1):1-7.
[40] GAREAU M G. Cognitive function and the microbiome. Int Rev Neurobiol, 2016, 131:227-246.
[41] DECOURT B, LAHIRI D K, SABBAGH M N. Targeting tumor necrosis factor alpha for Alzheimer′s disease. Curr Alzheimer Res, 2017, 14(4):412-425.
[42] WU S C, CAO Z S, CHANG K M, et al. Intestinal microbial dysbiosis aggravates the progression of Alzheimer′s disease in Drosophila. Nat Commun, 2017, 8(1):24.
[43] LI S, SHAO Y, LI K, et al. Vascular cognitive impairment and the gut microbiota. J Alzheimers Dis, 2018, 63(4): 1209-1222.
[44] SOLAS M, MILAGRO F I, RAMIREZ M J, et al. Inflammation and gut-brain axis link obesity to cognitive dysfunction: plausible pharmacological interventions. Curr Opin Pharmacol, 2017, 37:87-92.
[45] SJOGREN K, ENGDAHL C, HENNING P, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res, 2012, 27(6):1357-1367.
[46] NASEER M I, BIBI F, ALQAHTANI M H, et al. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer′s disease. CNS Neurol Disord Drug Targets, 2014, 13(2):305-311.
[47] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484):559-563.
[48] SO D, WHELAN K, ROSSI M, et al. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and Meta-analysis. Am J Clin Nutr, 2018, 107(6): 965-983.
[49] BISHEHSARI F, ENGEN P A, PREITE N Z. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes (Basel), 2018, 9(2): E102.
[50] LAM Y Y, HA C W, CAMPBELL C R, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One, 2012, 7(3):e34233.
[51] DE FILIPPO C, CAVALIERI D, DI PAOLA M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA, 2010, 107(33):14691-14696.
[52] JAIN S, YADAV H, SINHA P R. Antioxidant and cholesterol assimilation activities of selected lactobacilli and lactococci cultures. J Dairy Res, 2009, 76(4):385-391.
[53] WANG A N, YI X W, YU H F, et al. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing-finishing pigs. J Appl Microbiol, 2009, 107(4):1140-1148.
[54] KULLISAAR T, ZILMER M, MIKELSAAR M, et al. Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol, 2002, 72(3):215-224.
[55] GAREAU M G. Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol, 2014, 817:357-371.
[56] FRANSEN F, VAN BEEK A A, BORGHUIS T, et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front Immunol, 2017, 8:1385.
[57] RIDAURA V K, FAITH J J, REY F E, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science, 2013, 341(6150):1241214.
[58] SMITH P, WILLEMSEN D, POPKES M, et al. Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. eLife, 2017, 6: e27014.
[59] SONOWAL R, SWIMM A, SAHOO A, et al. Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci USA, 2017, 114(36): 7506-7515.

基金

国家自然科学青年基金资助(81603319);
山西省高等学校科技创新项目资助(2015118);
山西省科技创新重点团队资助(201605D131045-18)
PDF(1137 KB)

Accesses

Citation

Detail

段落导航
相关文章

/